
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

METHOD FOR VAWT PLACEMENT ON A COMPLEX 
BUILDING STRUCTURE 

 
by 
 

Katharin C. Taylor 
 

June 2013 
 

Thesis Advisor:  Anthony J. Gannon 
Co-Advisor: Garth V. Hobson 

 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 

Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 

22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2013 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   

METHOD FOR VAWT PLACEMENT ON A COMPLEX BUILDING 

STRUCTURE 

5. FUNDING NUMBERS 

 

6. AUTHOR(S)  Katharin C. Taylor 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 

Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 

REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research (ONR) 

875 N Randolph St  

Arlington, VA 22217 

 

10. SPONSORING/MONITORING 

    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 

or position of the Department of Defense or the U.S. Government.  IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release;distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  

This thesis is part of a larger project that will demonstrate the feasibility of powering a commercially sized 7.5-ton 

cooling system. Excess cooling will be stored thermally using ice. This system has the potential to be used in military 

bases to reduce energy costs and fossil fuel consumption. A scaled down version would be suitable for data centers 

and forward operating bases where the transport of fuel can be costly and dangerous. The system will be built and 

operated at the Turbopropulsion Laboratory (TPL) of Naval Postgraduate School. This thesis concentrates on the 

choice and location of wind turbines used to power the cooling system.  

A simulation of Building 216, which is the planned site of the cooling system, was performed. A wind flow analysis 

found that optimum placement of the wind turbines is at the front of the south end of the building. The method for 

placing the wind turbines is outlined and applicable to other structures. Vertical Axis Wind Turbines (VAWTS) were 

found to be the most suitable for site location. A transient analysis of the VAWTS was necessary to accurately 

simulate their performance. This supported the selection of a three-bladed helical VAWT design. Further simulations 

of wind turbine separation showed some beneficial effects of close spacing.  
 

14. SUBJECT TERMS Commercial cooling system, vertical axis wind turbines, horizontal axis wind 

turbines,  computational fluid dynamics (CFD) 
15. NUMBER OF 

PAGES  
155 

16. PRICE CODE 

17. SECURITY 

CLASSIFICATION OF 

REPORT 
Unclassified 

18. SECURITY 

CLASSIFICATION OF THIS 

PAGE 

Unclassified 

19. SECURITY 

CLASSIFICATION OF 

ABSTRACT 

Unclassified 

20. LIMITATION OF 

ABSTRACT 

 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  

 Prescribed by ANSI Std. 239-18 



THIS PAGE INTENTIONALLY LEFT BLANK 

 ii 



Approved for public release; distribution is unlimited 
 
 

METHOD FOR VAWT PLACEMENT ON A COMPLEX BUILDING 
STRUCTURE 

 
 

Katharin C. Taylor 
Ensign, United States Navy 

B.S, United States Naval Academy, 2012 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2013 

 
 
 
Author:  Katharin C. Taylor 

 
 
 

Approved by:  Anthony J. Gannon, Research Assistant Professor 
Thesis Advisor 

 
 
 

Garth V. Hobson, Professor  
Thesis Co-Advisor 

 
 
 

Knox Millsaps 
Chair, Department of Aerospace and Mechanical Engineering  

 iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

  

 iv 



ABSTRACT 

This thesis is part of a larger project that will demonstrate the feasibility of powering a 

commercially sized 7.5-ton cooling system using wind power. Excess cooling will be 

stored thermally using ice. This system has the potential to be used in military bases and 

data centers to reduce energy costs and fossil fuel consumption. A scaled down version 

would be suitable for forward operating bases where the transport of fuel can be costly 

and dangerous. The system will be built and operated at the Turbopropulsion Laboratory 

(TPL) of Naval Postgraduate School. This thesis concentrates on the choice and location 

of wind turbines used to power the cooling system.  

A simulation of Building 216, which is the planned site of the cooling system, 

was performed. A wind flow analysis found that optimum placement of the wind turbines 

is at the front of the south end of the building. The method for placing the wind turbines 

is outlined and applicable to other structures. Vertical Axis Wind Turbines (VAWTS) 

were found to be the most suitable for site location. A transient analysis of the VAWTS 

was necessary to accurately simulate their performance. This supported the selection of a 

three-bladed helical VAWT design. Further simulations of wind turbine separation 

showed some beneficial effects of close spacing.  
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I. INTRODUCTION 

A. MOTIVATION 

The leadership of the United States of America realizes the importance of 

developing renewable energy for purposes of national security. President Barack Obama 

has pledged continued support for renewable energy advancement [1]. Additionally, the 

Navy is determined to power 50% of its shore based installations from renewable energy 

by the year 2020 [1]. In following with this decision, the Naval Postgraduate School 

(NPS) is developing a renewable energy facility to support its energy curriculum 

program. NPS will demonstrate the feasibility of powering a commercially sized 7.5-ton 

cooling system. Excess cooling will be stored thermally using ice. This application has 

the potential to be extended to military bases and data centers that have high-energy 

costs. A scaled down version would be suitable for forward operating bases where the 

transport of fuel can be costly and dangerous. This thesis focuses on various 

multidisciplinary aspects of installing wind turbines on existing structures. The wind flow 

around the structure must be analyzed to determine the location of highest velocity flow, 

which is the optimum location for the wind turbines.  A wind turbine suitable for the site 

conditions must be selected. It is important to examine how the separation distance 

between wind turbines affects their performance. Finally, supporting structures for the 

wind turbines must be designed.  

Vertical Axis Wind Turbines (VAWTS), as opposed to Horizontal Axis Wind 

Turbines (HAWTS), have been selected for the project. The rooftop application was 

selected to imitate urban locations, where there is limited space for wind turbines. 

Rooftops are widely applicable for the installation of wind turbines, because this is 

unused space on existing buildings. Ideally rooftops are thought to be the best locations 

as there are fewer obstructions further from the ground, resulting in higher wind flow for 

the wind turbines to extract power. There may be potential for placement on the sides of 

buildings and surrounding locations, but that was not investigated here.   
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1. Wind Turbine Designs: Horizontal Axis versus Vertical Axis 

The predominant wind turbine designs are horizontal axis wind turbines 

(HAWTS) and vertical axis wind turbines (VAWTS). HAWTS have an axis of blade 

rotation perpendicular to the structure and parallel with the ground. Typical HAWT 

examples of various sizes are shown in Figure 1.   

 

Figure 1.  Horizontal axis wind turbines. From [1].  

VAWTS have curved or straight blades with an axis of rotation parallel to the 

structure and perpendicular to the ground. Some typical examples are shown in Figure 2. 
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Figure 2.  Vertical axis wind turbines. From [3]. 

There are numerous VAWT designs including lift-based, drag-based, and a 

combination of lift and drag-based designs. Traditional VAWTS are lift-based designs. In 

lift-based designs the motion of the turbine rotor is driven by the lift forces on the blades. 

Conversely, drag-based designs are when the resultant force on the blade is 

approximately in the same direction as its motions. Examples of each type are noted in 

Figure 2. Various drag-based and combination drag and lift VAWT designs are currently 

under development [4]. 

In comparison with HAWTS, there is little published research regarding the design 

optimization of VAWTS. The development of VAWTS was initially abandoned because it 

was thought that they were highly inefficient in comparison with HAWTS. It was 

originally perceived that VAWTS had structural and bearing loading issues [4]. In the 

recent past, VAWTS have gained attention because their relatively simple design presents 

certain advantages. VAWTS are omnidirectional: they can capture wind from all directions 

without having to change their orientation to face the oncoming wind [4]. VAWTS appear 

to have little power loss during short wind gusts [2]. This is useful if the wind profile 

changes from the top to the bottom of the wind turbine, which is likely on a building.  

Drag-Based  Lift-Based  
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Recent research also suggests that VAWTS have a better response to unsteady 

and turbulent wind flows where similarly sized HAWTS may not attain similar 

performance [4]. VAWTS potentially attain higher performance than HAWTS in skewed 

flow and therefore are better suited for the roof top environment [5]. Additional research 

indicates VAWTS have lower acoustic emissions, making them even more suited for 

urban settings [6]. The gearbox and generator of VAWTS can conveniently be located on 

the ground, unlike HAWTS, so production and service costs are potentially lower [6].  

Disadvantage of VAWTS come at the expense of decreased efficiency due to the 

drag on the blade opposing the wind flow at low tip speed ratios (TSRS). Additionally, 

there is greater aerodynamic complexity for VAWTS since loading is unsteady and 

highly nonlinear [6]. Certain VAWT blades are difficult to manufacture [2]. Additionally, 

intrinsic torque ripple affects the power output and there are challenges associated with 

poor starting torque from the wind flow at low speeds (the “cut-in” velocity”) [2]. 

Until recently, simulating these wind turbines has been very difficult to do, 

because of lack of computing power. Computational VAWT research requires transient 

simulations, which are computationally intensive. Advanced equipment and software is 

required and it can take days to solve basic problems. Quite possibly, this is why there is 

such little design research about VAWTS. With the improvement of computing power, 

the use of Computation Fluid Dynamics (CFD) has proven a viable means for design 

investigation. CFD is becoming more cost effective than other testing methods. Typical 

methods for testing the performance of wind turbines include wind tunnel measurements 

and analytical methods, such as the vorticity transport model [7]. Wind tunnel testing can 

be difficult to conduct, because it requires large wind tunnels. Modern CFD packages are 

relatively simple to use and are becoming ever more accurate. CFD has become more 

popular for improving engineering models and verifying final designs [4]. CFD is also 

very good at comparing design changes.  

2. Previous Research 

Commercial cooling systems powered by rooftop wind turbines have never been 

proven. A master’s thesis from the University of Colorado in the 1970’s investigated a 
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small-scale wind powered cooling system intended for use in underdeveloped villages 

[8]. The concept, while appearing sound, has lain idle until now.  

The installation of vertical axis wind turbines on a roof top building was 

investigated at the University of Florence in Florence, Italy [5]. The k-epsilon model was 

used for their CFD simulations. They determined that the k-epsilon model most closely 

matched wind tunnel data.  Additionally, they found that VAWTS have better 

performance than HAWTS in skewed flow and therefore are better suited for the roof top 

environment. The “performance improvement due to the effects of skewed flow can also 

lead to a reduction in the minimum cut-in speed, thus extending the operating range of 

the rotor and increasing the energy harvesting for the low-wind conditions” [5]. The 

study determined that the slope angle of the building influences the performance of the 

turbines: small inclination angles of approximately 8-10 degrees improve the flow 

conditions on the roof top. This is significant as it means small changes to a roof may 

yield significant improvements to the wind flow and increase the power output of the 

wind turbines.    

B. PURPOSE 

The purpose of this thesis focuses on the application of the vertical axis wind 

turbines onto the rooftop of the Turbopropulsion Laboratory (TPL). Wind power is a 

commercialized and developed renewable energy technology. Wind turbines harness the 

kinetic energy from the wind and convert it into electrical power. A limitation of wind 

turbines is that they produce intermittent power. The power output of wind turbines is 

primarily influenced by the amount of available wind, the effect of wind gusts, and the 

distance of the wind turbines from the ground [2]. 

C. OBJECTIVE 

The objectives of this thesis are: 

1. To find the optimum placement of the wind turbines. 

2. To determine the best wind turbines for the application.  

3. What is the optimum number of blades of a VAWT? 
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4. What should be the design of the beam support structures for the wind 

turbines?  

5. How does the separation distance between wind turbines affect their 

performance? 

A numerical CFD approach was the primary means of investigation to find the 

optimum solution to these problems. CFD was used to perform a wind flow analysis 

around the TPL, research the optimum number of blades of a VAWT, and investigate 

how the separation distance of wind turbines affects their performance. The design of the 

beam support structures was done using a classical approach for the initial phase and was 

verified using a Finite Element Analysis (FEA). The thesis begins with a wind flow 

analysis, progresses to a wind turbine design investigation, discusses the design of the 

supporting beams, and finishes with an investigation concerning the spacing between 

wind turbines. 
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II. WIND FLOW ANALYSIS  

A. MOTIVATION 

Wind turbines perform better in locations with high velocity wind flow. High 

velocity wind has more kinetic energy for wind turbines to extract and convert into 

unregulated AC electrical power. The roof of the TPL is a complex building shape: its 

shape obstructs wind flow in certain areas. This makes it difficult to determine the 

optimum location to place the wind turbines. The goal of the wind flow analysis was to 

determine the best location to place the wind turbines on the roof of the TPL. This 

approach is applicable to any building. 

B. OVERVIEW 

Weather data from Fleet Numerical Meteorology and Oceanography Center 

(FNMOC) was used to determine the velocity and orientation of prevailing winds at the 

TPL. CFD simulations were used to investigate the wind flow over the building. The 

simulations provided insight into the locations of unobstructed, higher velocity wind 

flow. From these results, in addition to practical space requirements and site limitations, a 

specific location was selected for the placement of the VAWTS. 

Description of Building 216: A complex Building Structure  

Building 216 at the NPS TPL is the location of the renewable energy research 

facility. It is located inside the grounds of the Monterey Pines Golf Course and it is 

northwest of the Monterey airport. The elevation is about 257 feet and it lies 

approximately one mile from the coast [9]. 

Figure 3 is an aerial image of Building 216. Building 216 was an engine testing 

laboratory made from 15-18 inches of solid concrete walls. The roof is flat. It has ample 

space so practical adjustments can be made for the installation of the wind turbines. With 

a few rearrangements, there is sufficient space to the south of the building for the cooling 

system and chiller units. Additionally, there is ample space for the possible addition of 

more wind turbines and solar panels in future years. 
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Figure 3.  Aerial image of Building 216. After [10]. 

Figure 4 shows possible locations of the various energy facility components. As 

noted, the roof of Building 216 is a relatively complex shape when compared to open 

ground: the corners of the building have second story “towers,” which obstruct the wind 

flow. Although the roof is flat, the south end of the building is about 5 feet higher in 

elevation then the north side. This could potentially increase the wind velocity received 

by the south end of the building due to a pressure buildup from the fluid flow being 

compressed to a smaller area as it flows over the ledge. However, it makes construction 

on the roof slightly more challenging. Of additional importance, the wind turbines must 

be placed below the elevation of the highest second story tower, which is about 8.84 m 

(29 ft.) from the base of the flat section of the roof. Building 216 is located on a flight 

path to the Monterey airport. 

North side 

North towers 

Middle section 

South towers 

South side 

West 
 side 

East 
side 
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Figure 4.  Potential locations for components of Renewable Energy Facility. After [10]. 

C. WIND FLOW DATA FOR MONTEREY 

Data from Fleet Numerical Meteorology and Oceanography Center (FNMOC) 

was used to determine the direction and velocity of the prevailing wind.  FNMOC has 

years of recorded data from a measuring station at the Monterey Peninsula Airport, which 

is located less than a mile from Building 216. FNMOC provided 282,000 observations of 

wind speed and direction in a spreadsheet. A sample of these observations is provided in 

Appendix A.  

Figure 5 illustrates the annual wind rose for Monterey from 1980 until 2012, 

courtesy of FNMOC [11]. According to the data in Appendix A and the wind rose in 

Figure 5, prevailing winds come from the west at an average wind speed of 5.77 mph or 

2.58 m/s. The majority of wind speeds range from 2 m/s-8 m/s. The median wind speed is 

6.00 mph or 2.68 m/s.  

 

Potential Space for wind turbines 

Potential space 
for solar panels 

Potential space 
for chiller units  
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Figure 5.  Wind Rose data for Monterey, CA. From [11]. 

Figure 6 illustrates a diagram of the prevailing wind flow across Building 216. 

The wind velocity will be reduced on the west side of the roof, since the prevailing wind 

hits the west towers almost directly. The direction the wind hits Building 216 is not ideal. 

However, existing structures may not always have the ideal orientation to prevailing 

winds.   
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Figure 6.  Prevailing wind direction across Building 216. After [10]. 

Orientation of the Monterey Airport Runway  

The orientation of the airport runway in relation to Building 216 provided 

guidance about the direction of the prevailing wind. Airport runways are designed so that 

they are oriented parallel to the direction of predominant wind flow.  

By comparing the angle of orientation of the runway to Building 216, it was affirmed 

that the prevailing wind direction is from the west at about a 30 degree angle from the 

horizontal orientation of Building 216, as illustrated in Figure 7. It was necessary to 

determine this 30 degree angle to use as an appropriate orientation for the control volume 

surrounding Building 216 for the CFD simulations. 

 

Prevailing Wind 
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Figure 7.  Orientation of the Monterey Airport runway in relation to Building 216. 
After [10]. 

D. DESCRIPTION OF CFD SIMULATION 

ANSYS CFX was used for the CFD simulations. A design of Building 216 was 

created in Solidworks. Additionally, a control volume was created and oriented at a 30 

degree angle from Building 216 to represent the direction of the prevailing wind. The 

control volume was approximately three times the length of Building 216 on either side. 

The model was imported into ANSYS CFX for analysis. Figure 8 displays the 

Solidworks model of Building 216 and the control volume inserted into ANSYS CFX. 

 

 

Building 216: 
Location of 

wind turbines 

θ = 30 degrees 

Airport runway 
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 +  
a) Solidworks model of Building 216.   b) Solidworks model of control volume. 

 

 

 
  c) Building 216 and control volume inserted into ANSYS CFX. 
 

Figure 8.  Solidworks model of Building 216 and the control volume inserted into 
ANSYS CFX. 

Using ANSYS CFX, an appropriate mesh was created to ensure accurate results. 

Appendix B shows the mesh details. The mesh number of nodes was approximately 

170,000 and number of elements was approximately 580,000. The mesh is displayed in 

Figure 9. 
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Figure 9.  Mesh for ANSYS CFX analysis. 

A steady-state simulation was performed assuming that the air was an ideal gas. 

Figure 10 shows the inlet and outlet boundary conditions. 

 
 

Figure 10.  Set-up in ANSYS CFX. 
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Outlet 
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The sides and top of the boundary were defined as openings, where air could enter 

and exit. From the FNMOC data, the median wind velocity in Monterey is 2.68 m/s with 

the majority of wind speeds ranging from 2m/s to 8 m/s. For this reason, a series of 

simulations were conducted where the “inlet” wind velocity was 3 m/s, 4 m/s, and 5 m/s. 

The results presented are for the 4 m/s simulations, which is just above the typical cut-in 

speed for most wind turbines. The numerical model settings specific to CFX are 

displayed in Table 1.   

Target Final Residual 0.00001 
Algorithm Steady State 
Boundary Conditions  Top,Bottom,Sides  Opening: Entrainment 

Inlet  Air Ideal Gas, Velocity: 3-5 
m/s 

Outlet  Relative Pressure: 0 kPa  

Table 1.   Numerical Model Settings for Wind Flow Analysis. 

Complete descriptions of the ANSYS CFX specifications are listed in     

Appendix C.  

E. RESULTS OF CFD SIMULATION 

Building 216 presents difficulties for the placement of the wind turbines, because 

of its complex shape. The goal is to place the wind turbines at the location of highest 

wind velocity where they are most likely to be over their cut-in speed, which for most 

wind turbines lies somewhere between 3 m/s and 4 m/s. Figure 11 illustrates velocity 

vectors across the southern roof of Building 216. 
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Figure 11.  Velocity streamlines across Building 216.  

Results affirm that the dominant wind flow hits the second story towers at an angle which 

heavily obstructs the wind flow, creating an area of nearly zero velocity adjacent to the 

towers.  Average wind flows from the west present a significant challenge to achieving 

high velocities on the roof. Additionally, flat roofing is not optimal for fluid flow: the 

airflow is stopped and must recirculate around the edges. The edges cause the fluid flow 

to separate from the roof early on, leading to undesirable low velocity air flow. 

Using ANSYS CFX, a series of velocity plans were taken across Building 216 to 

determine the areas of low velocity wind flow. The inlet wind speed for all velocity 

planes depicted is 4m/s, which is a reasonable expectation for wind conditions at the 

location and above the cut-in speed of the wind turbines.  Figure 12 displays a series of 

Wind 
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velocity planes across Building 216 labeled A-D. The velocity planes in Figure 12 are 

placed to effectively illustrate the fluid flow characteristics around the building. 

 
Figure 12.  Velocity planes across Building 216 in ANSYS CFX. 

Figure 13 displays the wind flow across plane “A”, which is at the northern edge 

of the north roof.  It is the least obstructed area of flow across the building. The flow 

velocity increases as it travels over the roof of the second story levels. The wind reaches 

almost zero velocity in the corners of the roof adjacent to the second story levels. 

 

A 

B 

C 

D 

North roof 
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Figure 13.  Velocity Plane “A” located at northern edge of Building 216. 

Figure 14 depicts the differences in the wind flow on the southern edge of the 

north roof, in velocity plane “B.” Velocity plane “B” demonstrates that the wind flow is 

more obstructed. Intuitively this makes sense, because the second story towers are a 

greater obstacle for the wind based on the angle of attack of the wind. A suitable location 

for the wind turbines according to Figure 14 is on the left hand side of the roof away from 

the low velocity flow on the right hand side. 

 
 
 
 
 

 

Wind 

Plane A 

Northern edge 
North roof 
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Figure 14.  Velocity Plane B. 

The wind flow on the north side of the building is higher in velocity then the 

south side. Figure 15 illustrates the velocity planes on the south roof, which are denoted 

as velocity planes “C” and “D” from Figure 10. Comparison between Figures 15 (a) and 

(b) illustrate that the wind flow is more obstructed further south, where the second story 

towers have a greater effect on the wind. Figure 15 (a) displays a large area on the right 

hand side of the roof with low wind velocity. However, on the left hand side there is an 

area with higher velocity wind flow. The left hand side could be a potential location for 

the wind turbines. Figure 15 (b) is on the southern edge. It illustrates a complex wind 

flow profile and larger area of low velocity wind flow extending 3/4th of the way along 

the distance of the roof. 

 
 
 
 
 
 
 

Wind 

Plane B 
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North roof 
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 (a) Velocity Plane C. 
 
 

 
 (b) Velocity Plane D. 

Figure 15.  Velocity planes at south end of building.  

A summary of the findings from the velocity planes is illustrated on an aerial view 

of Building 216 in Figure 16. Note that the reference frame for the direction of prevailing 

wind has reversed: in Figure 16 the wind approaches from the left hand side of the figure, 

while in Figures 13-15 the wind approaches from the right side of the figure. 
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Figure 16.  Areas of low velocity wind flow on roof of Building 216. After [10]. 

To summarize the findings of the wind flow analysis across Building 216, the 

wind flow is significantly impeded by the presence of the second story towers. The areas 

of low velocity wind flow make physical sense based off the wind’s angle of attack on 

the towers. Figures 13 and 14 indicate that the highest velocity wind flow is on the north 

roof of the building. However, construction cannot be completed on the north roof.  The 

north roof is physically restricted by various intakes and a removable slab. The slab is 

part of an engine test cell inside Building 216. There is more ground-level space for the 

support structures and cooling systems adjacent to the south roof.  Wind flow is of high 

importance for the placement of the wind turbines, but other factors must also be taken 

into consideration. Although the north roof appears to have better wind flow, the south 

roof is the best option for the placement of the wind turbines due to spacing and 

Wind 
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of Low 
Velocity 
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Flow 
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installation considerations. Figure 17 illustrates the selected location for the wind turbines 

on the south roof of Building 216. 

 
 

Figure 17.  Selected site location for placement of VAWTS. After [10]. 

Implication of wind profile results on the selection of the wind turbines  

As mentioned in the introduction, previous research suggests the use of VAWTS 

is best for rooftop applications, because VAWTS are omni-directional and they can 

capture skewed wind flow [5]. The wind profile supports the decision to use VAWTS for 

the NPS renewable energy facility.  

Wind 

Wind 

Placement of VAWTS 

Placement of VAWTS 
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F. SUMMARY OF GENERAL APPROACH 

The general approach for a wind flow analysis is summarized below. This process 

is applicable to any building.   

• Make an approximate Solidworks model of the building. 

• Find representative wind data from the region. 

• Analyze the Solidworks model using numerical CFD simulations. 

•  Determine the areas of high velocity wind flow. 

• Examine the areas of high velocity wind. Ensure there are no physical or 

other restrictions at those locations. 

• Determine the best location for the wind turbines. 
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III. WIND TURBINE DESIGN ANALYSIS  

A. MOTIVATION FOR VAWT DESIGN INVESTIGATION  

Compared with HAWTS, there is little published research about the optimization 

of VAWTS. There are many VAWT designs but again there appear to be few 

publications comparing their performance and efficiency. The purpose of the design 

investigation is to evaluate different VAWT designs and research how their performance 

is affected by close spacing. It is advantageous to place as many wind turbines as close 

together as possible, because space is often limited. These results helped justify the 

selection and positioning of the VAWTS for the NPS renewable energy facility. 

Ultimately, the future goal of the NPS renewable energy facility is to design and 

manufacture its own VAWTS. For this reason, a significant portion of this thesis is 

devoted to optimizing VAWTS.  

B. VAWT BLADE NUMBER OPTIMIZATION 

1. Motivation 

Conventional VAWTS have three blades. Speculation suggests manufacturers 

initially constructed VAWTS with three blades because the most efficient HAWTS have 

three blades. Three blades are structurally balanced. However, HAWTS and VAWTS are 

structurally different: the most efficient design of one may not be the most efficient 

design of the other.  The research question to be addressed is what is the optimum 

number of blades of a VAWT?  

2. Overview 

VAWTS with two, three, six, and eighteen blades were analyzed in the CFD 

program, ANSYS CFX.  The wind velocity was held constant while the tip speed ratio 

(TSR) varied. Transient simulations were performed to capture the blade effects at 

different moments in time. The simulations were 2-D. The torque on the blades was 

calculated. Results displayed that the torque was highly alternating. The power 

coefficient was calculated and plotted against the TSR. This illustrated the performance 
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of each wind turbine design. These results, as well as availability limitations, supported 

the selection of a three-bladed helically shaped VAWT for the site location.  

3. Methodology 

A cross-section of a VAWT was created in Solidworks. The wind turbine 

thickness was 10 cm. The thickness was small so that 2-D simulations were possible. 

Figure 18 illustrates a 3-D wind turbine represented as a 2-D simulated slice. 

                       
 
a) VAWT.    b) 2-D Soildworks Representation. 

Figure 18.  Two-dimensional Wind Turbine representation. After [3]. 

NACA0012 airfoil was used as the blade shape. NACA0012 is a standard and widely 

used airfoil. The use of the airfoil was instructed in private communication [12]. 

NACA0012 airfoils have a maximum thickness of 12% at 30% chord [13]. Figure 19 

displays the airfoil. 
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Figure 19.  NACA0012 Airfoil. From [13]. 

The number of blades of each VAWT varied from two, three, six and eighteen in 

the numerical simulations. The blades were oriented around a center axis and had a rotor 

diameter of one meter. The chord of the blade was ten centimeters. Figure 20 shows the 

VAWT models. The VAWTS were placed inside a large rectangular control volume. The 

control volume was at a minimum 1.5 times the rotor diameter on either side of the rotor.  
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Figure 20.  VAWTS with 2, 3, 6, and 18 blades. 

Figure 21 illustrates the wind turbine and control volume in ANSYS CFX.  
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Figure 21.  Wind turbine rotor and control volume in ANSYS CFX. 

The mesh for the VAWT simulations was “fine,” which is the smallest sizing 

option available in the ANSYS CFX program. The mesh had approximately 220,000 

nodes and 100,000 elements for each wind turbine design. The mesh was approximately 

the same size for each VAWT simulation. The mesh elements were concentrated around 

the curved surfaces of the blades and rotor, as illustrated in Figure 22. Refer to Appendix 

D for mesh details.   

Control Volume 

Wind Turbine  
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Figure 22.  Mesh of 6 and 18-bladed wind turbines. 

As the flow through the VAWT’s was unsteady, transient CFD simulations were 

necessary. The rotational speed of the rotor varied while the “inlet” wind velocity was 

held constant. The boundary type on the rotor was a “no slip wall.” The top and bottom 

boundaries of the control volume were “openings”, which physically represent that the 

wind turbines operate in free air. The “symmetry” boundaries on the sides allowed for   

2-D simulations. Table 2 illustrates the numerical model settings. 

Numerical Model Settings 
Analysis Type  Transient, 2D 

Turbulence Model k- epsilon 
Target Residual 1E -4 

Transient Scheme Second order backward Euler  
Degree-stepping One degree of rotation per time-step 

Boundary Conditions Inlet: air ideal gas, velocity 4 m/s 
Outlet: average static pressure 0 kPa 

Sides: symmetry boundaries 
Top/ bottom: opening with entrainment 

Rotor: No slip wall 

Table 2.   Numerical Model Settings for wind turbine blade number investigation. 
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Figure 23 displays the ANSYS CFX simulation set up. 
 

 
 

 
Figure 23.  Set up of single rotor analysis in ANSYS CFX. 

The inlet wind velocity was 4 m/s. This velocity is significant because it is above 

the average VAWT cut-in speed. Additionally, 4 m/s is within the range of Monterey 

winds. The simulations were timed so that a total of 6 rotor revolutions would occur per 

simulation. Previous simulations at the TPL have determined that approximately 6 

revolutions provide accurate results for rotating machinery [12].  The rotor speed was 

based off the selected tip speed ratio for the simulation, an inlet velocity of 4 m/s, and the 

area of the rotor. The degree stepping was held constant so that there was one degree of 

rotation per time-step. ANSYS CFX calculated the torque during each time-step during 

the transient analysis for each VAWT blade design. The torque vector from all time-steps 

was exported into Microsoft Excel for data analysis. The specifics of the ANSYS CFX 

simulations are provided in Appendix E.  

The turbulence model for the simulations was the standard two equation k-epsilon 

model. It is the most widely used turbulence model and it is highly accurate for VAWT 
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simulations [5] [14]. It is the default turbulence model in ANSYS CFX. Previous 

research concluded that the k-epsilon equations, compared with other turbulence 

methods, most closely modeled wind tunnel data [5].  

4. Data analysis 

The CFD simulations calculated the torque per time-step on the blades. The 

“time-step” was a function of the time required for 6 rotor revolutions and the TSR. The 

“torque” and “time-step” values were exported into Microsoft Excel for data analysis. 

Using Excel, the average torque was calculated. The angular velocity was set as an input. 

The power could be calculated from the average torque and angular velocity using 

Equation 1, where P is the power and ω is the angular velocity: 

 

 𝑃 =  𝛵𝜔 [1]   

 

The Power Coefficient (Cp) is a non-dimensional parameter, which is used in 

wind turbine analysis to quantify how efficiently a wind turbine converts wind energy 

into mechanical power, refer to Equation 2 below [15]. 

 

 𝐶𝑝 = 𝑃
0.5 𝜌𝑎𝑖𝑟𝐴  𝑉3

 [2] 

 

ρ is the density of air, A is the frontal area of the wind turbines (the thickness multiplied 

by the diameter), and V is the air velocity or wind speed.  

 The Tip Speed Ratio (TSR) is the ratio between the rotational speed of the tip of 

the wind turbine blade and the velocity of the wind [15]. It is a non-dimensional quantity 

useful for wind turbine performance analysis. Refer to Equation 3 where R is the turbine 

radius. 

 𝑇𝑆𝑅 = 𝜔 𝑅
𝑉

 [3] 
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Plotting the Cp versus TSR provides a good indicator of the wind turbine performance, 

and was used to evaluate the different VAWT designs.   

5. Results of VAWT blade number investigation  

The two-bladed wind turbine has the best overall performance: it attained the highest 

Cp and produced power over the largest range of TSRs. It’s followed by, in decreasing 

order of performance, the three-bladed, six- bladed, and eighteen-bladed wind turbines. 

Figure 24 illustrates the power curves for each VAWT design. Note that the data did not 

violate the Betz limit, of a Cp of 0.593. The Betz limit is the maximum amount of power 

that a wind turbine can extract from the kinetic energy of the wind [15]. The detailed data 

for Figure 24 is in Appendix F.  

 

 

Figure 24.  TSR versus Cp. 
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The two-bladed wind turbine reached a maximum Cp of approximately 0.47 at a TSR 

of 3.5. The three-bladed wind turbine reached a maximum Cp of about 0.45 at a TSR of 3. 

The max Cp was 4% less for the three-bladed wind turbine. The two-bladed wind turbine 

produced power over a TSR range of 0.25 to 6. However, the generated power was so 

small at low TSRs that the usable power range occurred at TSRs from 1.25 to 6. The 

three-bladed VAWT produced power at TSRs of 0.25 to 5. The usable power range was 

from 1.25 to 5. The three-bladed VAWT had a lower usable power range then the two-

bladed VAWT.  

The three-bladed wind turbine had a lower “runaway speed”. The runaway speed is 

the unloaded rotor speed. A lower runaway speed is advantageous. It is annotated in 

Figure 24 and is the location where Cp is zero. For the three-bladed VAWT, the runaway 

speed occurred at a TSR of 5 and for the two-bladed VAWT was at a TSR of 6.  

However, at low TSRs from 1.25 to 2.9, the three-bladed wind turbine had a higher Cp. 

At a TSR of 2, the three-bladed VAWT outperformed the two-bladed by 41%. Both the 

two-bladed and three-bladed VAWTs had low starting torques.  

A three-bladed VAWT may have potential structural advantages in comparison with 

a two-bladed VAWT. Three blades are more structurally balanced, which means there are 

less blade vibrations and the rotation is smoother. However, a two-bladed design is 

potentially worth further investigation.   

The six and eighteen-bladed wind turbines had higher performance at lower TSRs 

from 0.25 to 1.75. The eighteen-bladed wind turbine had the highest Cp at a TSR of 1 and 

generated power from TSRs of 0.4 to 1.8. The nine-bladed wind turbine had the best Cp 

at a TSR of 1.5 and generated power from a TSR of 0.4 to 3.  Although the nine and 

eighteen-bladed wind turbines performed better at low TSRs, they did not produce much 

power. The maximum Cp of the two-bladed VAWT was about four times the maximum 

Cp of the eighteen-bladed VAWT.  

The torque versus number of revolutions for a three-bladed VAWT at a TSR of 

0.25 is shown in Figure 25. The torque is highly alternating and unsteady.  
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Figure 25.  Torque versus number of revolutions for 3-bladed VAWT at TSR 0.25 

The torque versus number of revolutions for a three-bladed VAWT at a TSR of 1 

is illustrated in Figure 26. The torque has become more consistent at a higher TSR and 

the mean torque is at a higher value. The torque is an alternating sinusoidal shape. The 

results display the torque on the blades when the VAWT generates usable amounts of 

power.  
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Figure 26.  Torque versus number of revolutions for 3-bladed VAWT at TSR 1. 

Figure 27 shows the torque versus number of revolutions of the 3-bladed VAWT 

at a TSR of 4. Notice the curve is more consistent then Figures 25 and 26. The torque 

alternates more smoothly at a higher TSR.  This demonstrates that a smoother and more 

consistent torque is analogous to higher power generation: the Cp at a TSR of 4 was 

greater than the Cp’s at TSRs of 0.25 and 4.  
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Figure 27.  Torque versus number of revolutions for 3-bladed VAWT at TSR 4.  

 

Selection of a Helical Blade Design 

Each of the results presented in Figures 25, 26, and 27 represent the torque on a 

straight bladed VAWT. However, if the blades are helically shaped, the total torque 

would be the sum of the individual torques produced along each straight section of the 

blade. At each straight section of the blade the torque would represent something similar 

to what is represented in Figure 27 for a straight blade. The sum of the straight sections of 

the blade would be the sum of a series of torque curves shaped like that of the single 

blade results. The resulting torque curve would be a constant line, which represents a 

more constant output torque. 

A straight blade and a helical blade are displayed in Figure 28.  

  

 37 



 
 

Figure 28.  Straight-Bladed versus Helical Blade. From [3]. 

The constant torque output for a helical blade concept is illustrated in Figure 29. It 

shows the phase lag of each section.   

  

Helical Blade Straight Blade 
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Figure 29.  Helical Blade Design.  
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6. Velocity profiles  

To visualize wind flow through the two, three, six and eighteen-bladed wind 

turbines, velocity contours were created using ANSYS CFX. Figures 30, 31, 32, and 33 

illustrate the fluid flow through the wind turbines. The blades are rotating counter 

clockwise in each figure. The velocity profiles in the figures are at a TSR that correspond 

to the VAWTS maximum Cp. This TSR represents the desired operating condition for the 

VAWT.  

Figure 30 demonstrates the velocity profile of the two-bladed VAWT at a TSR of 

3.5, which produced its maximum Cp of 0.47. 

 

Figure 30.  Velocity profile 2-bladed VAWT at TSR 3.5 
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The low momentum flow is evident behind the two-bladed VAWT. The maximum 

velocity occurs on the blade sections that directly capture the wind: the upper tip of the 

top blade and the tail end of the lower blade.    

Figure 31 shows the velocity profile of the three-bladed VAWT at a TSR of 3, it 

had a maximum Cp of 0.45. 

 

Figure 31.  Velocity profile 3-bladed VAWT at TSR 3 

The turbine wake appears to be less uniform then the two-bladed wind turbine wake and 

it has lower velocity flow. With more blades there is more fluid mixing. The max 

velocity occurs at the blades on the left and top of the VAWT, which is where the blades 
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are most exposed to the wind flow. On the right hand side the blade is not directly 

capturing the wind flow.   

Figure 32 illustrates the velocity profile for the six-bladed VAWT at a TSR of 1.5. 

Its Cp was 0.14. 

 

Figure 32.  Velocity profile 6-bladed VAWT at TSR 1.5 

The velocity profile varies significantly from the previous figures. Six blades create a 

more complex velocity profile. Notice the max velocity is on the blades located at bottom 

left. The high blade velocity contributes to a high velocity wake behind the VAWT on the 

bottom. Directly above the location of high velocity on the lower blade, there is a large 
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area of almost zero velocity flow within the turbine. The flow momentum in the wind 

turbine wake is lower than the two and three-bladed VAWTS.   

Figure 33 displays the 18-bladed VAWT at a TSR of 1, which had a Cp of 0.082. 

 

Figure 33.  Velocity profile 18-bladed VAWT at TSR 1. 

Notice the majority of the fluid flow through the wind turbine and in its wake is low 

velocity fluid flow. There appears to be high velocity flow on the blades located at the 

lower left of the turbine. Notice the medium velocity wake on the bottom. However, the 

majority of the fluid flow has low momentum. With more blades, there is less momentum 

in the wake. The data supports the observation that less downstream momentum 

corresponds to a lower Cp.  
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C. VAWT SELECTED FOR SITE LOCATION  

The results show that a two-bladed VAWT has the highest performance. 

However, no manufactured two-bladed VAWTS were found. A three-bladed VAWT also 

performs well and is commercially available. A helical blade design can potentially 

output a constant torque. For these reasons a three-bladed helical VAWT was desired for 

the site location.  There are very few three-bladed VAWTS with helical blades. The only 

one that could be found through local US distributors is manufactured by Urban Green 

Energy (UGE), who have multiple VAWTS with power ratings from 200W to 10 kW. 

UGE’s 4kW VAWTS were selected because they are small enough to be installed on the 

roof top of Building 216. Additionally, they produce reasonable amounts of power. Two 

of UGE’s 4 kW VAWTS are planned to be purchased at the time of writing.   

Dimensional drawings of UGE 4kW VAWTS are displayed in Appendix G. Figure 34 

displays UGE’s 4 kW VAWT. 

  

 44 



 
Figure 34.  UGE 4kW VAWT. From [16]. 

The cut-in wind speed for the UGE 4kW wind turbine is 3.5 m/s. Average 

Monterey winds are between 2 m/s and 8 m/s. The cutout wind speed is 30 m/s. Wind 

speeds this high are extremely unlikely to occur in Monterey. The power curves for 

UGE’s 4kW VAWTS are displayed in Figure 35. 
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(a) Power Output vs. Wind Speed 

 
(b) Potential Annual Output vs Annual Average Wind Speed 

Figure 35.  Power Curves for UGE 4kW Wind Turbine. From [17]. 

In another NPS thesis, these figures were analyzed to estimate the power output of 

the wind turbines at the TPL. Based off average wind speeds at the TPL, the expected 

annual power output is 1277.4 kW hr per year per wind turbine [18]. With two wind 

turbines, the total estimated power is 2554.8 kW hr per year. 

D. DUAL ROTOR ANALYSIS  

1. Motivation 

It is common for multiple wind turbines, as opposed to a single wind turbine, to 

be installed in an array. Often it is desirable to fit many turbines in small land areas to 

derive maximum power from the space available. For these applications, it is important to 

understand how the separation distance between multiple wind turbines affects their 
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performance. Similar studies have taken place for HAWTS [19]. However, there has not 

been similar published research for VAWTS. The goal of this analysis was to determine 

how the separation between VAWTS affects their power output, which is useful for the 

placement of the wind turbines on the roof of Building 216.  Additionally, the analysis 

sought to determine how three, six, and nine-bladed wind turbines were affected by 

spacing differences.  

2. Overview 

Dual rotor VAWTS were analyzed using CFD. The rotors were the same design 

as the 2-D VAWTS used in the single rotor analysis described in the previous section. 

The number of blades varied from three, six, and nine. The separation distance between 

the wind turbines varied from 0.4m, 0.1m, and 0.01m. The inlet wind velocity was a 

constant 4 m/s and the TSR was approximately 0.5. ANSYS CFX calculated the torque 

on the VAWTS for each simulation.  

3. Methodology 

The methodology was similar to that described in section III-B for the single rotor 

analysis. Instead of creating single 2-D rotors in Solidworks, dual vertically stacked 2-D 

rotors were used. The separation distance between the dual rotors varied from 0.01m, 

0.1m and 0.4m.  

Figure 36 illustrates the dual rotors and the spacing between them. 
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Figure 36.  Rotor spacing. 

The rotors were analyzed using the CFD program, ANSYS CFX. The TSR was 

set at approximately 0.5. The inlet wind velocity was 4 m/s. Dual VAWTS with three, 

six, and nine blades were analyzed with separation distances between the rotors of 0.4m, 

0.1m, and 0.01m. The computational mesh was similar to that of the single rotor 

simulations. The mesh elements were concentrated around the curved surfaces of the 

blades and in-between the dual rotors. It was important to make sure there were enough 

mesh elements in-between the closely spaced rotors for accurate results. The mesh is 

illustrated in Figure 37. 
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Figure 37.  Mesh details of dual rotors. 

Notice there are enough elements in-between the rotors. The number of mesh 

elements was approximately 100,000 and the number of mesh nodes was about 220,000. 

The number of mesh elements and mesh nodes were approximately the same for each 

VAWT simulation. Refer to Appendix H for the mesh details. Figure 38 displays the set-

up of the dual VAWT analysis in ANSYS CFX. 

 49 



 
 

Figure 38.  ANSYS CFX Set-up of dual rotor tests.  

The boundary conditions were the same as that of the single rotor analysis to meet 

the same physical requirements. The top and bottom were “openings” to imitate open air 

conditions. The interfaces between the blades were “no-slip walls”. A summary of the 

numerical model settings is presented in Table 3. Appendix I displays the ANSYS CFX 

simulation specifications for the dual rotor analysis. 

Inlet Outlet 

Opening 

Opening 
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Numerical Model Settings 
Analysis Type  Transient, 2D 

Turbulence Model k- epsilon 
Target Residual 1E -4 

Transient Scheme Second order backward Euler  
Degree-Stepping One degree of revolution per time-step 

Boundary Conditions Inlet: air ideal gas, velocity 4 m/s 
Outlet: average static pressure 0 kPa 

Sides: symmetry boundaries 
Top/ bottom: opening with entrainment 

Blades: No slip wall 

Table 3.   Numerical Model settings for dual VAWT analysis.  

 

4. Results 

The effects of close spacing impact the performance of the VAWTS. Figures 39 

and 40 illustrate this conclusion. The simulations were performed as a TSR of 

approximately 0.5 and at an inlet velocity of 4 m/s. Figure 39 shows the Cp versus the 

rotor separation for each pair of VAWTS. 
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Figure 39.  Rotor Separation vs Cp. 

Closer spacing improved the Cp by 12% for the nine-bladed VAWTS and by 13% for the 

three-bladed VAWTS. The six–bladed VAWTS had a 3% detriment in Cp. Figure 39 

illustrates that the Cp was greatest for the nine-bladed VAWTS, which agrees with the 

single rotor analysis. The single rotor analysis determined that at lower TSRs the higher-

bladed VAWTS have greater Cp.  

Figure 40 depicts the average torque versus rotor separation. 
 

12% increase  

3% decrease  

13% increase  
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Figure 40.  Average Torque vs Rotor Separation. 

The torque effects are similar to that of the Cp effects. The torque is influenced by close 

spacing between wind turbine rotors. Detailed results of the dual rotor analysis can be 

found in Appendix J. The torque and Cp results display that there is a potential benefit to 

close spacing between VAWT’s.  

Although the nine-bladed VAWTS had the highest Cp and torque, it is important 

to realize that they did not necessarily have the best performance. The dual rotor 

simulations were conducted at a low TSR. Further simulations should be conducted 

across a range of TSRs to evaluate the performance of the VAWTS.  

Velocity images of the six-bladed and nine-bladed VAWTS at a spacing of 0.01m 

are illustrated in Figure 41. 

12% increase  

3% decrease  

13% increase  
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Figure 41.  The 6 and 9-bladed dual VAWTS at a separation distance of 0.01m.  

The top blade is moving counter clock wise and the bottom blade is moving clock wise. 

The results of these simulations are helpful for the placement of the VAWTS on the roof 

of Building 216. The VAWTS can be spaced closely with a potential gain in 

performance.  

CCW 

CW 

CCW 

CW 
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E. BEAM DESIGN FOR VAWTS 

1. Motivation 

The VAWTS must not be placed directly onto the roof of Building 216. Although 

the roof is likely strong enough to support the VAWTS, it was decided not to 

permanently fix anything to it. This provides flexibility to move the wind turbines around 

the roof if necessary. A beam support structure provides mobility to the VAWT array if 

alterations need to be made in the future. For example, the addition of more VAWTS 

might require rearranging of the previous configuration. Adjustments can more easily be 

made to the beam structures then to the roof. Additionally, adjustments to the beam 

structures do not impact the structural integrity of the roof.   

2. Overview 

A beam structure for the 4kW VAWTS was designed in Solidworks and 

simulated in ANSYS Static Structural. The beams support the weight of the VAWTS and 

resist the bending moment and torque produced by wind gusts. UGE provided the load 

speciation’s for the 4kW VAWT. Engineering drawings were made of the final beam 

support structures.  

3. Methodology 

The load specifications of UGE’s 4kW VAWT are displayed in Appendix K. 

These load specifications are dependent on the selected tower height, which is the height 

of the center pole. 

Figure 42 illustrates the tower height of a wind turbine. The wind turbine in 

Figure 42 is a UGE 4kW VAWT. 
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Figure 42.  Tower height explanation. After [20]. 

A 3m tower height was selected for application of the VAWTS onto Building 

216. This is the shortest tower available. It is necessary so that the VAWTS sit within the 

building profile and do not protrude past the roof. A summary of the VAWT load 

conditions for the 3m tower are described in Table 4. 

UGE 4kW VAWT Specifications: Load specifications at base of tower at 50 m/s. 

N max (Axial) 13.15 kN [2.96 kips] 

Q max (Shear) 7.78 kN [1.75 kips] 

M max (Moment) 33.81 kN*m [24.93 k*ft] 

Deflection 0.045 m 

Table 4.   UGE 4kW VAWT Load Specifications. After [21]. 

The forces are defined in Figure 43. Notice that the load specifications in Table 4 

are defined at a wind speed of 50 m/s, or 112 mph. Winds of this velocity are extremely 

unlikely to occur.  

Tower height 
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Figure 43.  Load definitions. After [20]. 

A force representation was developed. Using the maximum axial, shear, and 

moment loads from Table 4, a basic statics analysis was used to calculate an equivalent 

distance with the same forces. The equivalent distance was used as the length of a 

representative wind turbine pole in Solidworks. The representative pole has the 

equivalent forces of the 4kW turbine and it provides a model for computational analysis.  

Figure 44 illustrates the equivalent force concept. 

 

 

 

 

Base of Tower Qmax 
Mmax 

Nmax 
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Figure 44.  Equivalent force diagram. 

Calculations determined that the length of the representative wind turbine pole is 4.34 m 

(171 inches). This pole was created in Solidworks. In the computational simulation, the 

shear force provide in Table 4 was applied to the top of the representative turbine pole to 

simulate the forces on the wind turbine.  

 Figure 45 is the Solidworks model of the representative turbine pole. 

Mmax = Qmax x D 

Fequivalent = Qmax 

Qmax 

Mmax 

Equivalent Distance, D 

 58 



 
Figure 45.  Representative turbine pole.  

An I- beam with a designation of w12X40 was selected to support the VAWT’s. A 

w12x40 beam has suitable strength and its weight is not excessive. The dimensions of a 

w12x40 beam are displayed in Figure 46. 

 

 

Equivalent Distance 
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Figure 46.  Dimensions of w12 x 40 I-Beam. After [22].  

Successive iterations of the beam structure led to the development of a series of I-

beams arranged in a quadrature. Shorter I-beams run perpendicular to the orientation of 

the quadrature beams to increase the strength of the design and reduce torsion. Each 

quadrature is designed for a single VAWT: two quadratures are planned for the two 

selected VAWTS. The beams are 8 m (315 inches) in length.  

The initial beam design is illustrated in Figures 47, 48, and 49. Figure 49 displays 

the lower flange of the VAWTS. The lower flange dimensions were provided by UGE. 

They are listed Appendix L. 

  

Width = 0.203 m 

0.0075 m 

Depth= 0.3048 m 

0.013 m 
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Figure 47.  Front view of beam design. 

 
Figure 48.  Corner view of beam design. 
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Figure 49.  Isometric view of beam design. 

The beam design was tested with the wind turbine representation in the center of 

the beam. This loading produces the greatest stress in the beams. In practice, the wind 

turbines will be located to the side of the beams. For design considerations it is best to 

check the stress in the worst case scenario, which is when the wind turbines are located in 

the center of the beams. Two beam designs will be necessary to support two VAWTS. 

They will be connected by a spine beam, which reduces torsion in the structure.  

Figures 50 and 51 display the beams connected by a spine beam. 

  

Lower-flange 
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Figure 50.  Beams connected by spine beam. 

 
Figure 51.  Beams connected by spine beam.  

Spine 
beam 

Spine 
beam 
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The model was tested using ANSYS Static Structural. A “coarse” computational 

mesh was used. The mesh had approximately 103,068 nodes and 16,007 elements. Mesh 

details are described in Appendix M. Figure 52 illustrates the mesh on the beam structure. 

 
Figure 52.  Mesh for beam design. 

In ANSYS Static Structural, forces equal to the maximum shear stress from Table 

4 were applied to the wind turbine representations. The shear forces were oriented 

parallel to beam. The sides of the beams were constrained as they would be in practice.  

Figure 53 illustrates the problem set-up in ANSYS Static Structural. 
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Figure 53.  ANSYS Mechanical Set-up. 

ANSYS Static Structural calculated the total deformation, equivalent stress, and 

equivalent elastic strain on the beam design. Appendix N displays the ANSYS Static 

Structural simulation details.  

Figure 54 displays the deformation in the beams. The maximum deformation in 

the beams is 0.00016527 m. UGE provided that the max deformation should not be above 

0.045 m: the beam design meets these standards. 

Applied Forces 

Fixed 
supports Fixed 

supports 
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Figure 54.  Total Deformation on the beams. 

The stress on the beams is shown in Figure 55. The beam design experiences 

limited stress. The max stress in the beams is 119 MPa. This is below the yield strength 

of A36 structural steel, which is 250 MPa: the stiffness of the structure was the design 

constraint.    
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Figure 55.  Equivalent stress on the beams. 

Figure 56 shows the strain on the beams. The max strain on the beam design is 

0.00061 m/m, which is not problematic for structural steel and ensures that the wind 

turbines will not deflect above their limiting rate.  
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Figure 56.  Equivalent strain on the beams. 

 

The shear force was reapplied at an angle perpendicular to the quadrature beams. 

It is important to test the integrity of the beams at the most extreme conditions. The most 

extreme loading will occur when the shear forces from the wind turbines are applied 

parallel and perpendicular to the structure. A separate loading case was simulated with 

the shear force applied perpendicular to the beams orientation. The perpendicular loading 

produces much greater torsion on the beam.  

 

Figure 57 displays the perpendicular loading in ANSYS Static Structural. The 

ANSYS Static Structural simulation details are listed in Appendix O.  
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Figure 57.   Perpendicular loading in ANSYS mechanical.  

Figure 58 displays the results of the deformation simulation. There is very little 

deformation in the beam design. The max deformation is 0.0083317 m, which is below 

the max allowed value of 0.045 m. 

  

Applied Forces 

Fixed supports 

Fixed supports 
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Figure 58.  Deformation. 

Figure 59 shows the results of the strain simulation. The equivalent strain on the 

beam design is limited. The max value reaches 0.001323 m/m.  
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Figure 59.  Equivalent strain on beam design.  

Figure 60 shows the simulation stress results. The maximum stress on the beam 

structure is 262 MPa, which is located at the center support for the wind turbine flange.  
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Figure 60.  Equivalent Stress on beam design. 

The max stress on the beams is illustrated in Figure 61. 
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Figure 61.  Max stress on beam structure. 

The max stress is just above the yield strength of structural steel, which is 250 MPa. 

However, the loading condition used in the analysis is for the worst case scenario: the 

prescribed loading conditions are for winds of 50 m/s (112 mph). Winds of 50 m/s define 

a category III hurricane [23].  A category III hurricane would cause extensive structural 

damage to all structures and buildings. A category III hurricane is extremely unlikely to 

occur in California. It is safe to assume the beam design will withstand a wide range of 

operating conditions. However, it should be taken into account that if winds reach 50 m/s, 

there is the potential for deformation on the center flange support beams but failure will 

not occur.  

4. Results 

From the analysis in ANSYS Static Structural, the structural integrity of the beam 

design was proven. A few modifications were made to the final design.  
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The final beam design is depicted in Figures 62 and 63. A representative wind 

turbine is depicted on the beam. The wind turbine encompasses the same volume as the 

selected VAWTS. Engineering drawings of the beam structures were created in 

Solidworks. These were used to manufacture the beams. Refer to Appendix P for the 

engineering drawings. 

 

 
Figure 62.  Final beam design front view. 

Representative VAWT 
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Figure 63.  Final beam design front view from top. 

Figures 64 and 65 display the final beam design with the connecting spine beam 

on the roof of Building 216.  
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Figure 64.  The final design with spine beam on Building 216. From [24]. 

 

Figure 65.  Closer image of final design with spine beam on Building 216. From [24].  
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Figure 66 is a summary of the VAWT placement on Building 216. It illustrates 

VAWTS with three helically shaped blades placed at the northern edge of the south roof. 

The wind turbines are closely spaced. The beam support structure is connected by a cross 

sectional beam for additional torsional support.    

 
 

 
Figure 66.  Summary of VAWT placement. From [24]. 

 
 
 
 
 
 
 
 
 

Close separation distance 

Beam design 
Cross beam for 
additional support 

Located on front 
of south roof 

Helical VAWTs 
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Figure 67 displays the construction on Building 216 at the time this thesis report 

was completed. The railings and stairways have been installed up to the upper south 

ledge.  

 

 
Figure 67.  Construction on Building 216 at time of report.  
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IV. CONCLUSIONS 

The analysis presented above resulted in the following conclusions to the 

previously stated objectives:  

1. The optimal location for the wind turbines in on the northern edge of the south 

roof of the TPL. 

2. A two-bladed helical VAWT has the best performance.  

3. For the application onto the roof of the TPL, a lack of availability led to the 

selection of the next best performing VAWT, a three-bladed helical design. 

4. A beam structure was created to support the wind turbines on the roof. 

5. Close spacing between VAWTS potentially benefits their performance. The 

VAWTS will be tightly spaced onto the roof of Building 216. 
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V. RECOMMENDATIONS FOR FUTURE WORK 

There are a few important recommendations for future research to expand on this 

thesis. It is worth researching how side winds affect the performance of VAWTS. This 

thesis was limited to analyzing winds approaching from the average wind direction. The 

wind turbines were placed so they would directly capture wind flow around the building: 

they were not positioned so that one wind turbine would receive wind flow through the 

other. If the wind approaches from a skewed wind direction, there could be some 

blockage effects on one wind turbine by the other wind turbine. These blockage effects 

should be further investigated to determine if there is any detriment to the performance of 

the wind turbines. 

Additional future research is to analyze how VAWTS perform at close spacing 

across a full range of TSRs. This thesis conducted these simulations at a single TSR of 

0.5. Another topic worthy of investigation is to analyze how modifications to the roofs of 

buildings can improve wind flow for wind turbines. For example, the addition of curved 

roof ledges could decrease early fluid separation on the building structure, resulting in a 

higher velocity fluid flow for the wind turbines.  
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APPENDIX A: SAMPLE OF WIND DATA PROVIDED BY FNMOC 

 
  

WBAN YR--MODAHRMN DIR SPD MPH
23245 198001010000 999 0
23245 198001010100 999 0 Total number of observations: 282,494
23245 198001010200 999 0 Average overall wind speed: 6.06147
23245 198001010300 120 7
23245 198001010400 110 6
23245 198001010415 999 0 Variable 0.023239
23245 198001010500 999 0 Calm 0.208256
23245 198001010520 30 4 N 0.021377
23245 198001010600 40 3 NNE 0.005062
23245 198001010700 999 0 NE 0.006248
23245 198001010800 999 0 ENE 0.010659
23245 198001010900 999 0 E 0.052185
23245 198001011000 999 0 ESE 0.06398
23245 198001011100 999 0 SE 0.035983
23245 198001011200 999 0 SSE 0.018726
23245 198001011300 999 0 S 0.032358
23245 198001011400 999 0 SSW 0.034748
23245 198001011500 999 0 SW 0.050851
23245 198001011519 999 0 WSW 0.080738
23245 198001011600 999 0 W 0.144201
23245 198001011700 999 0 WNW 0.099379
23245 198001011800 100 4 NW 0.083712
23245 198001011900 100 4 NNW 0.046167
23245 198001012000 999 0
23245 198001012100 290 9
23245 198001012102 270 8
23245 198001012200 270 9
23245 198001012220 270 7
23245 198001012300 270 7
23245 198001020000 290 6
23245 198001020100 999 0
23245 198001020200 140 4
23245 198001020300 999 0
23245 198001020400 999 0
23245 198001020500 90 6
23245 198001020600 80 6
23245 198001020700 110 6
23245 198001020800 100 6
23245 198001020900 100 6
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APPENDIX B: MESH DETAILS FOR WIND FLOW ANALYSIS 

Meshing Highlights 
Mesh Methods Inflation and Face Sizing 
Use Advanced Sizing Method On: Proximity and Curvature 
Relevance Center Fine 
Span Angle Center Fine 
Number of Nodes 172,957 
Number of Elements  582,531 
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APPENDIX C: ANSYS CFX SPECIFICAITONS FOR WIND FLOW 
ANALYSIS 

Physics Report 
 
Domain Physics for Vel_4m s_30deg 
Domain - Default Domain  
Type Fluid 
Location B72 
Materials  
Air Ideal Gas  
     Fluid Definition Material Library 
     Morphology Continuous Fluid 
Settings  
Buoyancy Model Non Buoyant 
Domain Motion Stationary 
Reference Pressure  1.0000e+00 [atm] 
Heat Transfer Model Total Energy 
     Include Viscous Work Term On 
Turbulence Model k epsilon 
Turbulent Wall Functions Scalable 
     High Speed Model Off 
 
 
Boundary Physics for Vel_4m s_30deg 
Domain Boundaries  
Default Domain Boundary - Inlet  
 Type INLET 
 Location Inlet 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Total Temperature 
      Total Temperature  2.8815e+02 [K] 
 Mass And Momentum Normal Speed 
      Normal Speed  4.0000e+00 [m s^-1] 
 Turbulence Medium Intensity and Eddy Viscosity Ratio 
 Boundary - Openings  
 Type OPENING 
 Location Openings 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Opening Temperature 
      Opening Temperature  2.8815e+02 [K] 
 Mass And Momentum Entrainment 
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      Relative Pressure  0.0000e+00 [Pa] 
 Turbulence Zero Gradient 
 Boundary - Outlet  
 Type OUTLET 
 Location Outlet 
 Settings  
 Flow Regime Subsonic 
 Mass And Momentum Average Static Pressure 
      Pressure Profile Blend  5.0000e-02 
      Relative Pressure  0.0000e+00 [Pa] 
 Pressure Averaging Average Over Whole Outlet 
 Boundary - Default Domain Default  
 Type WALL 
 Location "F163.72, F164.72, F165.72, F166.72, F167.72, F168.72, 

F169.72, F170.72, F171.72, F172.72, F173.72, F174.72, F175.72, F74.72, F79.72, 
F80.72, F81.72, F82.72, F83.72, F84.72, F85.72, F86.72, F87.72, F88.72, F89.72, 
F90.72, F91.72, F92.72, F93.72, F94.72, F95.72, F96.72, F97.72" 

 Settings  
 Heat Transfer Adiabatic 
 Mass And Momentum No Slip Wall 
 Wall Roughness Smooth Wall 
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APPENDIX D: SINGLE ROTOR ANALYSIS ANSYS CFX MESH 
DETAILS 
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APPENDIX E: SINGLE ROTOR ANALYSIS, ANSYS CFX 
SPECIFICS 

Physics Report 
 
Table 3.  Domain Physics for CFX 
Domain - Rotor  
Type Fluid 
Location B122 
Materials  
Air Ideal Gas  
     Fluid Definition Material Library 
     Morphology Continuous Fluid 
Settings  
Buoyancy Model Non Buoyant 
Domain Motion Rotating 
     Angular Velocity Rotor Omega 
     Axis Definition Coordinate Axis 
     Rotation Axis Coord 0.3 
Reference Pressure  1.0000e+00 [atm] 
Heat Transfer Model Total Energy 
Turbulence Model k epsilon 
Turbulent Wall Functions Scalable 
     High Speed Model Off 
Domain - Stator  
Type Fluid 
Location B242 
Materials  
Air Ideal Gas  
     Fluid Definition Material Library 
     Morphology Continuous Fluid 
Settings  
Buoyancy Model Non Buoyant 
Domain Motion Stationary 
Reference Pressure  1.0000e+00 [atm] 
Heat Transfer Model Total Energy 
Turbulence Model k epsilon 
Turbulent Wall Functions Scalable 
     High Speed Model Off 
Domain Interface - Domain Interface 1  
Boundary List1 Domain Interface 1 Side 1 
Boundary List2 Domain Interface 1 Side 2 
Interface Type Fluid Fluid 
Settings  
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Interface Models General Connection 
     Frame Change Transient Rotor Stator 
Mass And Momentum Conservative Interface Flux 
Mesh Connection GGI 
 
 
Table 4.  Boundary Physics for CFX 
Domain Boundaries  
Rotor Boundary - Domain Interface 1 Side 1  
 Type INTERFACE 
 Location R1_int 
 Settings  
 Heat Transfer Conservative Interface Flux 
 Mass And Momentum Conservative Interface Flux 
 Turbulence Conservative Interface Flux 
 Boundary - Sym1a  
 Type SYMMETRY 
 Location Sym1a 
 Settings  
 Boundary - Sym1b  
 Type SYMMETRY 
 Location Sym1b 
 Settings  
 Boundary - Rotor Default  
 Type WALL 
 Location "F116.122, F117.122, F118.122, F119.122, F120.122, 

F124.122, F125.122, F127.122, F128.122, F129.122, F130.122, F131.122, F132.122, 
F133.122, F134.122, F135.122, F136.122, F137.122, F138.122, F139.122, F140.122, 
F141.122, F142.122, F143.122, F144.122, F145.122, F146.122, F147.122, F148.122, 
F149.122, F150.122, F151.122, F152.122, F153.122, F154.122, F155.122" 

 Settings  
 Heat Transfer Adiabatic 
 Mass And Momentum No Slip Wall 
 Wall Roughness Smooth Wall 
Stator Boundary - Inlet  
 Type INLET 
 Location Inlet 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Static Temperature 
      Static Temperature  2.8815e+02 [K] 
 Mass And Momentum Cartesian Velocity Components 
      U Inlet U 
      V  0.0000e+00 [m s^-1] 
      W  0.0000e+00 [m s^-1] 
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 Turbulence Medium Intensity and Eddy Viscosity Ratio 
 Boundary - Domain Interface 1 Side 2  
 Type INTERFACE 
 Location S1_int 
 Settings  
 Heat Transfer Conservative Interface Flux 
 Mass And Momentum Conservative Interface Flux 
 Turbulence Conservative Interface Flux 
 Boundary - Bottom  
 Type OPENING 
 Location Bottom 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Static Temperature 
      Static Temperature  2.8815e+02 [K] 
 Mass And Momentum Entrainment 
      Relative Pressure  0.0000e+00 [Pa] 
 Turbulence Zero Gradient 
 Boundary - Top  
 Type OPENING 
 Location Top 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Opening Temperature 
      Opening Temperature  2.8815e+02 [K] 
 Mass And Momentum Entrainment 
      Relative Pressure  0.0000e+00 [Pa] 
 Turbulence Zero Gradient 
 Boundary - Outlet  
 Type OUTLET 
 Location Outlet 
 Settings  
 Flow Regime Subsonic 
 Mass And Momentum Average Static Pressure 
      Pressure Profile Blend  5.0000e-02 
      Relative Pressure  0.0000e+00 [Pa] 
 Pressure Averaging Average Over Whole Outlet 
 Boundary - Sym1  
 Type SYMMETRY 
 Location Sym1 
 Settings  
 Boundary - Sym2  
 Type SYMMETRY 
 Location Sym2 
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APPENDIX F: DETAILED RESULTS OF SINGLE ROTOR 
SIMULATIONS 

 

Wind 
Speed 

Rotor 
Omega 
(rad/s) RPM TSR 

Torque 
(N m) 

ρair Inlet 
(kg/m3) Power (W) Cp 

3 Blades 

4 2 19.099 0.25 0.00138087 1.17 0.00276174 0.007376 
4 4 38.197 0.5 0.00117457 1.17 0.00469827 0.012549 
4 8 76.394 1 0.00106728 1.17 0.00853826 0.022805 
4 10 95.493 1.25 0.00175109 1.17 0.01751087 0.04677 
4 12 114.59 1.5 0.00283 1.17 0.03396 0.090705 
4 16 152.79 2 0.00437294 1.17 0.06996701 0.186878 
4 24 229.18 3 0.00700504 1.17 0.16812099 0.449041 
4 32 305.58 4 0.00401367 1.17 0.12843729 0.343048 
4 36 343.77 4.5 0.00176409 1.17 0.06350708 0.169624 
4 48 458.37 6 -0.003217 1.17 -0.1544163 -0.41244 

18 blades 

4 2 19.099 0.25 0.00349041 1.17 0.00698081 0.018645 
4 4 38.197 0.5 0.00302002 1.17 0.01208009 0.032265 
4 8 76.394 1 0.00384841 1.17 0.03078726 0.082231 
4 16 152.79 2 0.00028854 1.17 0.00461658 0.012331 

6 Blades 

4 2 19.099 0.25 0.00237173 1.17 0.00474345 0.012669 
4 4 38.197 0.5 0.00236026 1.17 0.00944104 0.025216 
4 8 76.394 1 0.00292137 1.17 0.02337098 0.062422 
4 12 114.59 1.5 0.00433789 1.17 0.05205469 0.139035 
4 24 152.79 3 0.00150096 1.17 0.02401533 0.064144 

2 Blades 

4 2 19.099 0.25 0.00091042 1.17 0.00182085 0.004863 
4 4 38.197 0.5 0.00081414 1.17 0.00325657 0.008698 
4 8 76.394 1 0.00064376 1.17 0.00515011 0.013756 
4 12 114.59 1.5 0.00172908 1.17 0.02074902 0.055419 
4 16 152.79 2 0.0028818 1.17 0.04610879 0.123154 
4 24 229.18 3 0.0072795 1.17 0.17470798 0.466635 
4 28 267.38 3.5 0.00627624 1.17 0.17573485 0.469377 
4 32 305.58 4 0.00542155 1.17 0.17348956 0.46338 
4 48 458.37 6 -0.0001348 1.17 -0.0064707 -0.01728 

 

  

 95 



THIS PAGE INTENTIONALLY LEFT BLANK 

  

 96 



APPENDIX G: UGE 4KW VAWT DIMENSIONAL DRAWINGS 
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APPENDIX H: DUAL ROTOR MESH DETAILS 

 

 101 

toetails of "Mesh" q. 

El Defaults 
Physics Preference CFD 

Solver Preference CFX 

Relevance 0 

El Sizing 

Use Advanced Size Function On: Curvature 
Relevance Center Fine 
Init ial Size ·seed Active Assembly 

Smoothing Medium 

Transition Slow 

Span Angle Center Fine 

Cu rvatu re No rmal Ang le 1.0 . 

"J Min Size l.e.004 m 

Max Face Size 2.e.002 m 

Max SiZe 2.e.002 m 

Growth Rate 1.20 

Minimum Edge Length 3.6435e.004 m 

00 .Jnflation 

El Patch Confonning Options 

Triangle Surface Mesher Program Controlled 

El Advanced 

Shape Checking CFD 

Element Midside Nodes Dropped 

Straight Sided Elements 

Number of Retries 0 

Extra Retries For Assembly Yes 

Rigid Body Behavior Dimensionally Reduced 
Mesh Mo rphing Disabled 

00 Defeaturing 

El Statistics 

Nodes 216380 

Elements 104776 

Mesh Metric None 
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APPENDIX I: DUAL ROTOR ANALYSIS- ANSYS CFX 
SPECIFICATIONS (6 BLADED VAWTS) 

 Physics Report 

Table 3.  Domain Physics for Fluid Flow CFX_010 
Domain - Rotor 1  
Type Fluid 
Location B242 
Materials  
Air Ideal Gas  
     Fluid Definition Material Library 
     Morphology Continuous Fluid 
Settings  
Buoyancy Model Non Buoyant 
Domain Motion Rotating 
     Angular Velocity  4.0000e+01 [rev min^-1] 
     Axis Definition Two Points 
     Rotation Axis From "0 [m], 0.505 [m], 0 [m]" 
     Rotation Axis To "0 [m], 0.505 [m], 0.01 [m]" 
Reference Pressure  1.0000e+00 [atm] 
Heat Transfer Model Total Energy 
Turbulence Model k epsilon 
Turbulent Wall Functions Scalable 
     High Speed Model Off 
Domain - Rotor 2  
Type Fluid 
Location B320 
Materials  
Air Ideal Gas  
     Fluid Definition Material Library 
     Morphology Continuous Fluid 
Settings  
Buoyancy Model Non Buoyant 
Domain Motion Rotating 
     Angular Velocity -4.0000e+01 [rev min^-1] 
     Axis Definition Two Points 
     Rotation Axis From "0 [m], -0.505 [m], 0 [m]" 
     Rotation Axis To "0 [m], -0.505 [m], 0.01 [m]" 
Reference Pressure  1.0000e+00 [atm] 
Heat Transfer Model Total Energy 
Turbulence Model k epsilon 
Turbulent Wall Functions Scalable 
     High Speed Model Off 
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Domain - Stator  
Type Fluid 
Location B24 
Materials  
Air Ideal Gas  
     Fluid Definition Material Library 
     Morphology Continuous Fluid 
Settings  
Buoyancy Model Non Buoyant 
Domain Motion Stationary 
Reference Pressure  1.0000e+00 [atm] 
Heat Transfer Model Total Energy 
Turbulence Model k epsilon 
Turbulent Wall Functions Scalable 
     High Speed Model Off 
Domain Interface - Domain Interface 1  
Boundary List1 Domain Interface 1 Side 1 
Boundary List2 Domain Interface 1 Side 2 
Interface Type Fluid Fluid 
Settings  
Interface Models General Connection 
     Frame Change Transient Rotor Stator 
Mass And Momentum Conservative Interface Flux 
Mesh Connection GGI 
Domain Interface - Domain Interface 2  
Boundary List1 Domain Interface 2 Side 1 
Boundary List2 Domain Interface 2 Side 2 
Interface Type Fluid Fluid 
Settings  
Interface Models General Connection 
     Frame Change Transient Rotor Stator 
Mass And Momentum Conservative Interface Flux 
Mesh Connection GGI 
 
 

Boundary Physics for Fluid Flow CFX_010 
Domain Boundaries  
Rotor 1 Boundary - Domain Interface 2 Side 1  
 Type INTERFACE 
 Location R2_int 
 Settings  
 Heat Transfer Conservative Interface Flux 
 Mass And Momentum Conservative Interface Flux 
 Turbulence Conservative Interface Flux 
 Boundary - Sym 1a  
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 Type SYMMETRY 
 Location Sym 1a 
 Settings  
 Boundary - Sym 2a  
 Type SYMMETRY 
 Location Sym 2a 
 Settings  
 Boundary - Rotor 1 Default  
 Type WALL 
 Location "F245.242, F246.242, F247.242, F248.242, F249.242, 

F250.242, F251.242, F252.242, F253.242, F254.242, F255.242, F256.242" 
 Settings  
 Heat Transfer Adiabatic 
 Mass And Momentum No Slip Wall 
 Wall Roughness Smooth Wall 
Rotor 2 Boundary - Domain Interface 1 Side 1  
 Type INTERFACE 
 Location R1_int 
 Settings  
 Heat Transfer Conservative Interface Flux 
 Mass And Momentum Conservative Interface Flux 
 Turbulence Conservative Interface Flux 
 Boundary - Sym 1b  
 Type SYMMETRY 
 Location Sym 1b 
 Settings  
 Boundary - Sym 2b  
 Type SYMMETRY 
 Location Sym 2b 
 Settings  
 Boundary - Rotor 2 Default  
 Type WALL 
 Location "F323.320, F324.320, F325.320, F326.320, F327.320, 

F328.320, F329.320, F330.320, F331.320, F332.320, F333.320, F334.320" 
 Settings  
 Heat Transfer Adiabatic 
 Mass And Momentum No Slip Wall 
 Wall Roughness Smooth Wall 
Stator Boundary - Inlet  
 Type INLET 
 Location Inlet 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Static Temperature 
      Static Temperature  3.0000e+02 [K] 
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 Mass And Momentum Cartesian Velocity Components 
      U  5.0000e+00 [m s^-1] 
      V  0.0000e+00 [m s^-1] 
      W  0.0000e+00 [m s^-1] 
 Turbulence Medium Intensity and Eddy Viscosity Ratio 
 Boundary - Domain Interface 1 Side 2  
 Type INTERFACE 
 Location S1_int 
 Settings  
 Heat Transfer Conservative Interface Flux 
 Mass And Momentum Conservative Interface Flux 
 Turbulence Conservative Interface Flux 
 Boundary - Domain Interface 2 Side 2  
 Type INTERFACE 
 Location S2_int 
 Settings  
 Heat Transfer Conservative Interface Flux 
 Mass And Momentum Conservative Interface Flux 
 Turbulence Conservative Interface Flux 
 Boundary - Bottom  
 Type OPENING 
 Location Bottom 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Opening Temperature 
      Opening Temperature  3.0000e+02 [K] 
 Mass And Momentum Cartesian Velocity Components 
      U  5.0000e+00 [m s^-1] 
      V  0.0000e+00 [m s^-1] 
      W  0.0000e+00 [m s^-1] 
 Turbulence Medium Intensity and Eddy Viscosity Ratio 
 Boundary - Top  
 Type OPENING 
 Location Top 
 Settings  
 Flow Regime Subsonic 
 Heat Transfer Opening Temperature 
      Opening Temperature  3.0000e+02 [K] 
 Mass And Momentum Cartesian Velocity Components 
      U  5.0000e+00 [m s^-1] 
      V  0.0000e+00 [m s^-1] 
      W  0.0000e+00 [m s^-1] 
 Turbulence Medium Intensity and Eddy Viscosity Ratio 
 Boundary - Outlet  
 Type OUTLET 
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 Location Outlet 
 Settings  
 Flow Regime Subsonic 
 Mass And Momentum Average Static Pressure 
      Pressure Profile Blend  5.0000e-02 
      Relative Pressure  0.0000e+00 [Pa] 
 Pressure Averaging Average Over Whole Outlet 
 Boundary - Sym 1  
 Type SYMMETRY 
 Location Sym 1 
 Settings  
 Boundary - Sym 2  
 Type SYMMETRY 
 Location Sym 2 
 Settings  
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APPENDIX J: DUAL ROTOR ANALYSIS- DETAILED RESULTS 

# of 
Blades 

Spacing 
(m)  RPM 

Wind- 
speed 
(m/s) 

In/ 
Outwards 

Total 
Time 
(s) 

Time-Step 
(s/deg)  

Upper 
Torque 
(N m) 

Lower 
Torque (N 
m) 

6 0.01 40 4 In 9 0.0042 0.00462 0.00480109 
6 0.1 40 4 In 9 0.0042 0.004604 0.0051441 
6 0.4 40 4 In 9 0.0042 0.004967 0.00471179 
9 0.01 40 4 In 9 0.0042 0.006252 0.00693616 
9 0.1 40 4 In 9 0.0042 0.005818 0.006813 
9 0.4 40 4 In 9 0.0042 0.006038 0.00566301 
3 0.01 40 4 In 9 0.0042 0.002662 0.00261224 
3 0.1 40 4 In 9 0.0042 0.002441 0.00238132 
3 0.4 40 4 In 9 0.0042 0.002377 0.00225533 

18 0.1 40 4 In 9 0.0042 0.009404 0.0094158 

 

# of 
Blades 

Spacing 
(m)  

Total 
Torque 
(N m) 

 
Velocity 
Inlet  
(m/s)  

ρair 
Inlet 
(kg/m3) Power (W) Cp TSR 

 
6 0.01 0.0094 4.999 1.1764 0.03946474 0.026853 0.52359878 

 
6 0.1 0.0097 4.999 1.1765 0.04083104 0.027782 0.52359878 

 
6 0.4 0.0097 4.999 1.176 0.04054179 0.027596 0.52359878 

 
9 0.01 0.0132 5 1.1765 0.05524166 0.037563 0.52359878 

 
9 0.1 0.0126 5 1.1765 0.0529104 0.035977 0.52359878 

 
9 0.4 0.0117 5 1.1765 0.0490136 0.033328 0.52359878 

 
3 0.01 0.0053 5 1.17 0.02209282 0.015106 0.52359878 

 
3 0.1 0.0048 5 1.17 0.02020166 0.013813 0.52359878 

 
3 0.4 0.0046 5 1.17 0.01940208 0.013266 0.52359878 

 
18 0.1 0.0188 5 1.1767 0.07883141 0.053597 0.52359878 

 

  

 109 



THIS PAGE INTENTIONALLY LEFT BLANK 

  

 110 



APPENDIX K: UGE 4KW VAWT LOAD SPECIFICATIONS  
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Na 

A 
Ma~ 

---cia 
TOP OF TOWER 

Ob 
8 8 -----+ 

'fMb 
BASE OF TOWER Nb 

A 

8 

UGE-4K 
Vertical Axis Wind 

Turbine Specifications 

Load Specifications 
50 m /s (1 12 mph) 

-----·-
Maximum Loads at the A -A plane (For all of towers) 
Nmax 4.52 KN [1.02 k) 
Qm~ --~5~.2~8~K~N~[1~.1~9~k*J --------------~ 

Mm~ 8.34 KN'm [ 6.15 k'ft] 

J Maximum Loads at the B-B plane 
3M Tower 

Nmax 13.15 KN [2.96 k) 
Qmax 7.78 KN [175 k) 
Mmax 33.81 KN'm [24.93 k~ftL 

7MTower 
Nmax 15.29 KN [3.44 k) 
Qmax 8.86 KN [1.99 k) 
Mmax 69.18 KN'm.J51.0 k'ft) 

13M Tower 
Nmax 2n9 KN [4.76 k) 
Qmax 14.93 KN [3.36 k) 
Mmax 158.96 KN'm [117.21 k' ft] 

20M Tower 
Nmax 30.93 KN [6.95 k) 

j Qmax 23.97 KN [5.39 k] 
ax 321.86 KN'm 1237.33· k' ftl 
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APPENDIX L: LOWER FLANGE DRAWING UGE 4KW VAWT 
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APPENDIX M: MESH DETAILS BEAM DESIGN ANALYSIS 

Object Name Mesh 
State Solved 

Defaults 
Physics Preference Mechanical 

Relevance 0 
Sizing 

Use Advanced Size Function Off 
Relevance Center Coarse 

Element Size Default 
Initial Size Seed Active Assembly 

Smoothing Medium 
Transition Fast 

Span Angle Center Coarse 
Minimum Edge Length 5.715e-003 m 

Inflation 
Use Automatic Inflation None 

Inflation Option Smooth Transition 
Transition Ratio 0.272 

Maximum Layers 5 
Growth Rate 1.2 

Inflation Algorithm Pre 
View Advanced Options No 

Patch Conforming Options 
Triangle Surface Mesher Program Controlled 

Advanced 
Shape Checking Standard Mechanical 

Element Midside Nodes Program Controlled 
Straight Sided Elements No 

Number of Retries Default (4) 
Extra Retries For Assembly Yes 

Rigid Body Behavior Dimensionally Reduced 
Mesh Morphing Disabled 

Defeaturing 
Pinch Tolerance Please Define 

Generate Pinch on Refresh No 
Automatic Mesh Based Defeaturing On 

Defeaturing Tolerance Default 
Statistics 

Nodes 103068 
Elements 16007 

Mesh Metric None 
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APPENDIX N: ANSYS STATIC STRUCTURAL BEAM DESIGN 
SPECIFICS FOR APPLIED PARALLEL FORCES 

STATIC STRUCTURAL (A5) 

TABLE 60 
Model (A4) > Analysis 
Object Name Static Structural (A5) 

State Solved 
Definition 

Physics Type Structural 
Analysis Type Static Structural 
Solver Target Mechanical APDL 

Options 
Environment Temperature 22. °C 

Generate Input Only No 

TABLE 61 
Model (A4) > Static Structural (A5) > Analysis Settings 

Object Name Analysis Settings 
State Fully Defined 

Step Controls 
Number Of Steps 1. 

Current Step Number 1. 
Step End Time 1. s 

Auto Time-Stepping Program Controlled 
Solver Controls 

Solver Type Program Controlled 
Weak Springs Program Controlled 

Large Deflection Off 
Inertia Relief Off 

Restart Controls 
Generate Restart Points Program Controlled 

Retain Files After Full Solve No 
Nonlinear Controls 

Force Convergence Program Controlled 
Moment Convergence Program Controlled 

Displacement Convergence Program Controlled 
Rotation Convergence Program Controlled 

Line Search Program Controlled 
Stabilization Off 

Output Controls 
Stress Yes 
Strain Yes 

Nodal Forces No 
Contact Miscellaneous No 
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General Miscellaneous No 
Calculate Results At All Time Points 

Max Number of Result Sets Program Controlled 
Analysis Data Management 

Solver Files Directory J:\Taylor\beamanalysis_files\dp0\SYS\MECH\ 
Future Analysis None 

Scratch Solver Files Directory  
Save MAPDL db No 

Delete Unneeded Files Yes 
Nonlinear Solution No 

Solver Units Active System 
Solver Unit System mks 

TABLE 62 
Model (A4) > Static Structural (A5) > Loads 

Object Name Force Force 2 Fixed Support Fixed Support 2 Fixed Support 3 
State Fully Defined 

Scope 
Scoping Method Geometry Selection 

Geometry 1 Face 
Definition 

Type Force Fixed Support 
Define By Vector   
Magnitude 7800. N (ramped)   

Direction Defined   
Suppressed No 

FIGURE 1 
Model (A4) > Static Structural (A5) > Force 
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FIGURE 2 
Model (A4) > Static Structural (A5) > Force 2 

 

TABLE 63 
Model (A4) > Static Structural (A5) > Loads 

Object Name Fixed Support 4 
State Fully Defined 

Scope 
Scoping Method Geometry Selection 

Geometry 1 Face 
Definition 

Type Fixed Support 
Suppressed No 

Solution (A6) 

TABLE 64 
Model (A4) > Static Structural (A5) > Solution 

Object Name Solution (A6) 
State Solved 

Adaptive Mesh Refinement 
Max Refinement Loops 1. 

Refinement Depth 2. 
Information 

Status Done 

TABLE 65 
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information 

Object Name Solution Information 
State Solved 

Solution Information 
Solution Output Solver Output 

Newton-Raphson Residuals 0 
Update Interval 2.5 s 
Display Points All 

FE Connection Visibility 
Activate Visibility Yes 
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Display All FE Connectors 
Draw Connections Attached To All Nodes 

Line Color Connection Type 
Visible on Results No 

Line Thickness Single 
Display Type Lines 

TABLE 66 
Model (A4) > Static Structural (A5) > Solution (A6) > Results 

Object Name Equivalent Stress Total Deformation Equivalent Elastic Strain 
State Solved 

Scope 
Scoping Method Geometry Selection 

Geometry All Bodies 
Definition 

Type Equivalent (von-Mises) Stress Total Deformation Equivalent Elastic Strain 
By Time 

Display Time Last 
Calculate Time History Yes 

Identifier  
Suppressed No 

Integration Point Results 
Display Option Averaged   Averaged 

Results 
Minimum 8687.6 Pa 0. m 4.7486e-007 m/m 
Maximum 3.6835e+008 Pa 0.12451 m 1.941e-003 m/m 

Minimum Occurs On W12x14_divider basesupportrevised W12x14_divider 
Maximum Occurs On lower flangenoholes pole lower flangenoholes 

Information 
Time 1. s 

Load Step 1 
Substep 1 

Iteration Number 1 

TABLE 67 
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Safety Tools 

Object Name Stress Tool 
State Solved 

Definition 
Theory Max Equivalent Stress 

Stress Limit Type Tensile Yield Per Material 

TABLE 68 
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Results 

Object Name Safety Factor 
State Solved 
Scope 

Scoping Method Geometry Selection 
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Geometry All Bodies 
Definition 
Type Safety Factor 

By Time 
Display Time Last 

Calculate Time History Yes 
Identifier  

Suppressed No 
Integration Point Results 

Display Option Averaged 
Results 

Minimum 0.6787  
Minimum Occurs On lower flangenoholes 

Information 
Time 1. s 

Load Step 1 
Substep 1 

Iteration Number 1 
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APPENDIX O: ANSYS STATIC STRUCTURAL BEAM DESIGN 
SPECIFICS FOR APPLIED PERPENDICULAR FORCES 

STATIC STRUCTURAL (A5) 

TABLE 60 
Model (A4) > Analysis 
Object Name Static Structural (A5) 

State Solved 
Definition 

Physics Type Structural 
Analysis Type Static Structural 
Solver Target Mechanical APDL 

Options 
Environment Temperature 22. °C 

Generate Input Only No 

TABLE 61 
Model (A4) > Static Structural (A5) > Analysis Settings 

Object Name Analysis Settings 
State Fully Defined 

Step Controls 
Number Of Steps 1. 

Current Step Number 1. 
Step End Time 1. s 

Auto Time-Stepping Program Controlled 
Solver Controls 

Solver Type Program Controlled 
Weak Springs Program Controlled 

Large Deflection Off 
Inertia Relief Off 

Restart Controls 
Generate Restart Points Program Controlled 

Retain Files After Full Solve No 
Nonlinear Controls 

Force Convergence Program Controlled 
Moment Convergence Program Controlled 

Displacement Convergence Program Controlled 
Rotation Convergence Program Controlled 

Line Search Program Controlled 
Stabilization Off 

Output Controls 
Stress Yes 
Strain Yes 

Nodal Forces No 
Contact Miscellaneous No 
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General Miscellaneous No 
Calculate Results At All Time Points 

Max Number of Result Sets Program Controlled 
Analysis Data Management 

Solver Files Directory J:\Taylor\beamanalysis_files\dp0\SYS\MECH\ 
Future Analysis None 

Scratch Solver Files Directory  
Save MAPDL db No 

Delete Unneeded Files Yes 
Nonlinear Solution No 

Solver Units Active System 
Solver Unit System mks 

TABLE 62 
Model (A4) > Static Structural (A5) > Loads 

Object Name Force Force 2 Fixed Support Fixed Support 2 Fixed Support 3 
State Fully Defined 

Scope 
Scoping Method Geometry Selection 

Geometry 1 Face 
Definition 

Type Force Fixed Support 
Define By Vector   
Magnitude 7800. N (ramped)   

Direction Defined   
Suppressed No 

FIGURE 1 
Model (A4) > Static Structural (A5) > Force 
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FIGURE 2 
Model (A4) > Static Structural (A5) > Force 2 

 

TABLE 63 
Model (A4) > Static Structural (A5) > Loads 

Object Name Fixed Support 4 
State Fully Defined 

Scope 
Scoping Method Geometry Selection 

Geometry 1 Face 
Definition 

Type Fixed Support 
Suppressed No 

Solution (A6) 

TABLE 64 
Model (A4) > Static Structural (A5) > Solution 

Object Name Solution (A6) 
State Solved 

Adaptive Mesh Refinement 
Max Refinement Loops 1. 

Refinement Depth 2. 
Information 

Status Done 

TABLE 65 
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information 

Object Name Solution Information 
State Solved 

Solution Information 
Solution Output Solver Output 

Newton-Raphson Residuals 0 
Update Interval 2.5 s 
Display Points All 

FE Connection Visibility 
Activate Visibility Yes 
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Display All FE Connectors 
Draw Connections Attached To All Nodes 

Line Color Connection Type 
Visible on Results No 

Line Thickness Single 
Display Type Lines 

TABLE 66 
Model (A4) > Static Structural (A5) > Solution (A6) > Results 

Object Name Equivalent Stress Total Deformation Equivalent Elastic Strain 
State Solved 

Scope 
Scoping Method Geometry Selection 

Geometry All Bodies 
Definition 

Type Equivalent (von-Mises) Stress Total Deformation Equivalent Elastic Strain 
By Time 

Display Time Last 
Calculate Time History Yes 

Identifier  
Suppressed No 

Integration Point Results 
Display Option Averaged   Averaged 

Results 
Minimum 8687.6 Pa 0. m 4.7486e-007 m/m 
Maximum 3.6835e+008 Pa 0.12451 m 1.941e-003 m/m 

Minimum Occurs On W12x14_divider basesupportrevised W12x14_divider 
Maximum Occurs On lower flangenoholes pole lower flangenoholes 

Information 
Time 1. s 

Load Step 1 
Substep 1 

Iteration Number 1 

TABLE 67 
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Safety Tools 

Object Name Stress Tool 
State Solved 

Definition 
Theory Max Equivalent Stress 

Stress Limit Type Tensile Yield Per Material 

TABLE 68 
Model (A4) > Static Structural (A5) > Solution (A6) > Stress Tool > Results 

Object Name Safety Factor 
State Solved 
Scope 

Scoping Method Geometry Selection 
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Geometry All Bodies 
Definition 
Type Safety Factor 

By Time 
Display Time Last 

Calculate Time History Yes 
Identifier  

Suppressed No 
Integration Point Results 

Display Option Averaged 
Results 

Minimum 0.6787  
Minimum Occurs On lower flangenoholes 

Information 
Time 1. s 

Load Step 1 
Substep 1 

Iteration Number 1 
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APPENDIX P: ENGINEERING DRAWINGS 

 

 131 

.~ ..... ...... 
;:.·:.~'::" .................. ca. .... ~ .. 40·0.•• ..... . 

~~::~-
;;~=:~:. ......................... ~·· t~~••··~·· ... . 

~~;~:~~ ..................... ~·· ............. . 

'I 
li 



 

 
 132 

' 

{~-~------------~-----------~-~+ 
I=:=· 1 .• :::.~······ I 



 

 

 133 

I;::::: I ... :::: .. ~········ I 

:l 
0 

,.,...... ..• 
<+·~ 

~············· 

e (i) \ Q 

0 

e 



 

 134 

·n.i::=~--j~----~~----~=-+ 
~ ----------------------------------------------------------~ 

{-------------------+ 

·II II 



LIST OF REFERENCES 

[1] America’s Navy. (2010, Jan. 21) “USDA, Navy Sign Agreement to Encourage the 
Development, Use of Renewable Energy.” [Online] Available: 
http://www.navy.mil/submit/display.asp?story_id=50710  

[2] L.E. Chaar, “Wind energy technology-industrial update,” presented at Power and 
Energy Society General Meeting, 2011 IEEE, San Diego, CA, 2011, pp.1, 5. 

[3] “Wind turbines.” [Online] Available: 
http://commons.wikimedia.org/w/index.php?title=Special:Search&limit=20&offs
et=20&redirs=0&profile=default&search=wind+turbine 

[4] D.MacPhee, “Recent advances in rotor design of vertical axis wind turbines,” 
Wind Engineering, vol. 36, no. 6, pp. 647-666,  Dec. 2013. 

[5] F. Balduzzi, A. Bianchini, E. Carnevale, L Ferrari, S. Magnani, “Feasibility 
analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a 
building,” Applied Energy, vol.97, pp. 921-929, Dec. 2011. 

[6] M. Mukinovic, G. Brenner, A. Rahimi, “Aerodynamic Study of Vertical Axis 
Wind Turbines,” Lectures Notes in Computational Science and Engineering, vol. 
74, pp. 43-49, 2011. 

[7] F Scheurich, R Brown, “ Modeling the aerodynamics of vertical-axis wind 
turbines in unsteady wind conditions,” Wind Energy, vol.16, pp. 91-107, 2013. 

[8] H.C. Davis, “Wind-electric ice making for developing world villages,” M.S. 
thesis, Dept. Mech. Eng., Univ. Colorado, Boulder, CO, 1994. 

[9] “Monterey Peninsula Airport in Monterey, CA.” [Online] Available: 
http://www.city-data.com/airports/Monterey-Peninsula-Airport-Monterey-
California.html 

[10] “Monterey, CA.” [Online] Available: https://maps.google.com/ 

[11] D. Ramsuar, Private communication, Fleet Numerical Meteorology and 
Oceanography Center, 2012.  

[12] G. Hobson, Private communication, Naval Postgraduate School, 2013.  

[13] “NACA 0012 Airfoils.” [Online] Available: 
http://airfoiltools.com/airfoil/details?airfoil=n0012-il 

 135 



[14] S. Ghatage, J. Joshi, “Optimisation of vertical axis wind turbine: CFD simulations 
and experimental measurements,” The Canadian Journal of Chemical 
Engineering, pp. 1186-1201, 2012. 

[15] F. M. White, Fluid Mechanics, 7th ed. New York: McGraw Hill, 2011 

[16] “Picture Gallery.” [Online] Available: 
http://www.urbangreenenergy.com/products/picture-gallery  

[17] “UGE 4K Specification Sheet.” [Online] Available: 
http://www.urbangreenenergy.com/products/uge-4k/downloads 

[18] L. Olsen, “An initial investigation of a novel thermal storage concept as part of a 
renewable energy system,” M.S. Thesis, Dept. Mech. Eng., Naval Postgraduate 
School, Monterey, CA, 2013.  

[19] L. Deshun, L. Rennian, Y. Congxin, W. Xiuyong, X. Wang, “Numerical 
Simulation in the Wake of a Horizontal Axis Wind Turbine,” Power and Energy 
Engineering Conference, vol., pp. 1,4,25-28, March 2011.   

[20] “Picture Gallery.” [Online] Available: 
http://www.urbangreenenergy.com/products/picture-gallery  

[21] “Technical Documentation: Load Specifications for UGE 4k.” [Online] 
Available: http://www.urbangreenenergy.com/sites/default/files/UGE-
4K%20Load%20Specifications.pdf  

[22] “I-beam Definitions.” [Online] Available: 
http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&profile=de
fault&search=i+beam+dimensions&fulltext=Search&uselang=en  

[23] “Hurricane Categories.” [Online] Available: 
http://geography.about.com/od/lists/a/hurrcategories.htm  

[24] C. Wagner, Private communication, Turbopropulsion Laboratory intern, 2013.  

  

 136 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 

 137 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. Introduction
	A. motivation
	1. Wind Turbine Designs: Horizontal Axis versus Vertical Axis
	2. Previous Research

	B. purpose
	C. Objective

	II. wind flow analysis
	A. motivation
	B. Overview
	Description of Building 216: A complex Building Structure

	C. wind flow data for monterey
	Orientation of the Monterey Airport Runway

	D. Description of CFD Simulation
	E. REsults of cfd simulation
	Implication of wind profile results on the selection of the wind turbines

	F. Summary of general approach

	III. Wind Turbine design analysis
	A. MOTIVATION FOR VAWT design investigation
	B. VAWT Blade number optimization
	1. Motivation
	2. Overview
	3. Methodology
	4. Data analysis
	5. Results of VAWT blade number investigation
	Selection of a Helical Blade Design

	6. Velocity profiles

	C. VAWT selected for Site Location
	D. dual rotor analysis
	1. Motivation
	2. Overview
	3. Methodology
	4. Results

	E. BEam design for vawtS
	1. Motivation
	2. Overview
	3. Methodology
	4. Results


	IV. Conclusions
	V. recommendations for future work
	appendix A: Sample of wind data provided by FNmoc
	appendix B: MEsh details for wind flow analysis
	Appendix C: ANsys cfx specificaitons for wind flow analysis
	Appendix D: single rotor analysis ansys cfx mesh details
	appendix e: single rotor analysis, ansys Cfx specifics
	appendix f: Detailed results of single rotor simulations
	appendix G: UGE 4kW VAWT dimensional drawings
	appendix h: Dual rotor mesh details
	appendix i: dual rotor Analysis- ansys cfx specifications (6 bladed vawts)
	appendix j: Dual rotor analysis- detailed results
	appendix K: UGE 4kw VAwt load specifications
	appendix L: Lower flange drawing UGE 4kw vawt
	appendix M: mesh details beam design analysis
	appendix N: ANSYS static structural beam design specifics for applied parallel forces
	Static Structural (A5)
	Solution (A6)


	Appendix O: ansys static structural beam design specifics for Applied perpendicular forces
	Static Structural (A5)
	Solution (A6)


	appendix P: engineering drawings
	List of References
	Initial Distribution List

